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Spin-up from a rotating disk 
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An analytical-numerical analysis of the fluid motion induced by an impulsive 
change in the angular velocity of a rotating disk is presented. Separate solutions 
are derived for the early development and for the approach to the ultimate state. 
The superposed flow is found to have variations on two length scales, and is 
characterized by the generation and propagation of shear-type wave trains. 
These decaying wave trains ultimately lead to the new von K&rm&n state 
corresponding to the changed angular velocity of the disk. 

1. Introduction 
In  this paper we consider fluid motion induced by an impulsive change in the 

angular velocity of a disk rotating in contact with an incompressible viscous 
fluid. The physical situation will be as follows: the fluid occupying the region 
z 2 0 is in steady motion owing to the uniform rotation (at angular velocity Q) 
of a disk at z = 0. At time t = 0, the angular velocity of the disk is changed by a 
small amount EQ. Our aim now is to describe the transition of the fluid to the 
new steady state corresponding to the new uniform rotation of the disk with 
angular velocity sZ( 1 + E ) .  Here we confine our attention to small perturbations 
in the basic von K&rm&n steady state and construct two separate solutions 
which are valid during the initial and final stages of the spin-up process 
respectively. A general treatment of the oscillatory character of the superposed 
fluid motion is also presented. 

The situation considered hare is evidently analogous to the time-dependent 
flow of a rotating fluid discussed by Greenspan & Howard (1963), although in 
their case there are two infinite disks initially in rigid-body rotation with the 
fluid. They have proved that the ultimate state is reached through small ampli- 
tude decaying inertial oscillations of twice the frequency of basic rotation. 
Chawla (1972) has shown that the spin-up of a rotating fluid admits the generation 
and propagation of decaying shear-type wave trains. The spin-up problem for a 
rotating disk in an infinite fluid is essentially difficult because the basic steady 
state is not known analytically. Hence, unlike Greenspan & Howard (1963), we 
may not be able to obtain simple solutions. Nevertheless, the method of analysis 
employed in this paper brings out a representative physical mechanism of the 
system. 

A secondary motivation of the present paper is to examine the validity of 
Benton’s (1966) conjecture for impulsively started rotating flows in general. 

t Permanent address: Indian Institute of Technology, Kharagpur. 
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Benton (1966, see also Thiriot 1940; Nigam 1951) has studied the evolution of 
the von K&rmiLn flow when the fluid motion is started impulsively from rest. 
He has surmised (without proof of course) that, in analogy with the Greenspan- 
Howard flow, the von K&rm&n steady state is reached through small amplitude 
decaying oscillations of frequency 2Q. The present formulation, however, reveals 
that the frequency of the superposed oscillatory motion is too small to be 
effective before the ultimate state is achieved. We find that diffusion is the 
dominant feature throughout the spin-up process. The interaction of diffusion 
with the basic von K k m h  axial inflow generates shear-type aperiodic wave 
trains which ultimately decay, leading to the new von Kkmzin state. 

2. Mathematical formulation 
We take cylindrical co-ordinates (r,  8,Z) in a non-rotating frame of reference, 

with T as the time. Let V and p respectively be the velocity vector and the 
pressure when the angular velocity of the disk is changed (at T = 0)  from Q to 
Q( 1 + 6). Consistent with the continuity equation, we define 

J' = - SrQH, F + rQG6 + (&)a Hi%, (2.1) 

with p = -PvQP, x = (Q/v)*Z,  T = QT, (2.2) 

where H ,  C and P are functions of z and 7 only and F, 8 and 4 are unit vectors 
along the r, 8 and z directions respectively. In  addition, a suffix denotes a partial 
derivative, andp and v are respectively the fluid density and kinematic viscosity. 
Substitution of (2.1) and (2.2) into the axisymmetric governing equations leads to 

H,,, - H,, - HH,, + BHE - 2G2 = 0, (2.3) 

G,.,-G,-HG,+CH2 = 0. (2.4) 

Appropriate initial and boundary conditions for the time-dependent fluid flow are 

H = HO, G = GO at 7 = 0, (2.5) 

for r 2 0, (2.6) 1 H = O ,  H,=O,  C = i + s  on z = O  
Hs+O, G+O as Z+CQ 

where HO and Go are the von K&rm An functional forms associated with the basic 
steady velocity field. We seek the solutions of the system (2.3)-(2.6) when 
s 4 1, and write 

H ( z ,  7) = H0(z)  + E H ~ ( z ,  t ) ,  G(z,  7) = Go@) + s G ~ ( z ,  t ) ,  (2.7) 

with t = $7, (2.8) 

where c = 0-884 is the steady von K k m h  inflow far away from the disk. 
Substituting (2.7) and (2.8) in (2.3) and (2.4) and neglecting terms of order €2, 

we get 
H2z, - H'JH!, + QHZ2 - 2G02 = 0, ( 2 . 9 ~ )  

G:, - HOG; + GoH: = 0, (2.9b) 

with HO(0) = 0, HX(0) = 0, Go(0) = 1, H!(co) = 0 = GO(CO), ( 2 . 9 ~ )  
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Hi,, - c 2 E t  - HIH:, - HoHi, + H: Hi - 4G"G1= 0, (2.10a) 

@, - c2Gf - HOG: - HIG: + H: GI+ Hi GO = 0, (2.10b) 

H'(z, 0) = 0 = G~(z ,  0), 

H1(O,t) = 0, H$(O,t) = 0, G1(O,t) = 1, H,l(m,t) = 0, G1(m,t) = 0. 
(2.104 

The steady-state problem characterized by the set (2.9) has been solved byvon 
K k m h  (1921), Cochran (1934), Fettis (1955) and, more recently, by Benton 
(1966). I n  the subsequent analysis of the superposed unsteady flow, governed 
by the differential set (2.10), we shall make use of the steady solution obtained 
by Benton. 

We now take the Laplace transform of the coupled linear system (2.10): 

Hi,, - c2sH! - HIH$, - HOHi, + H: H i  - 4G"G1 = 0, (2.1la) 

(2.11b) G~,-c s G1 - HOG: - H'G$ + GIH: + G"H$ = 0, 

P ( O ,  S) = 0, H,1(O, S) = 0, G1(O, S) = l / ~ ,  

H:(CO,S) = 0, G~(OO,S) = 0, (2.11 c) 

where s is the transform parameter with respect to t and the same symbols are 
used for the transformed and the untransformed variables. 

I n  order to account for the induced suction in the far field and the particular 
solution associated with it, we set 

&H'(Z, S) = -a($) +a(s)  H$/c~s +B(z, s), (2.124 

(2.12b) 

where a(s)/s gives the superposed axial flow towards the disk as z-foo, and 
B(z, s) and B(z, s) are given by 

(2.13 a) 

(2.13 b) 

s G l ( ~ ,  S )  = a(s) G:/c2s + B(z,  s), 

Bzz, - c2sBZ -BH!& - HOB,, + H,B, - 4GoG = 0, 

GzB - C ~ S B  -HOB, -BG: + GH: + GOB, = 0, 
- 

( 2.1 3 c) 

(2.14) 

and d e k e  H0(z) = - c + &(A), Go(z) = c2g(h), ( 2 . 1 5 ~ )  

(2.15 b )  

where m = ++(s+k)*. (2.16) 

Substitution of (2.14)-(2.16) transforms the differential sets (2.9) and (2.13) into 

(2.17 a )  

(2.17 b) 

I with B(O, S) = CX(S), BJO, S) = - OI(S) H$,(0)/c2s, 
B(O,S) = 1 - a($) G!(O)/C~$, 

&XI, s) = 0 = G(m, s). 

Following Benton (1966), we now make the change of variable 

= e-m 

c q z ,  s) = @-lf(h, s), a(& s) = P-lk(h ,  s), 

A%"' + A2( 2h" + hh" - @'2) + hhh' + 2g2 = 0, 

A2g" + h(hg' - h'g) = 0,  
39-2 
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with h(1) = 1, h’(1) = 0, cSg(1) = 1, g(0) = 0 = h(O), (2.17 c) 

and h3f”’ + h2[2f” +fh“ + hf’ -f’h’] + h[hf + h’f3 + 4gk 
+ (m- 1) [Shy + 2Ahf’-hh‘f] + (m- 1)2 [2Af’- 2f+fh]  = 0, (2.18a) 

(2.18b) h2k” + h[hk’ - kh’ +fg’ - g f ’ ]  + (m - 1) [2(hk’ - k) + kh - gf] = 0, 

(2.18 c) 

I n  these equations a prime denotes differentiation with respect to A. The sub- 
stitutions (2.15b) for the functions and 0 are chosen so as to satisfy the 
boundary conditions at A = 0 (corresponding to z = 00). Fettis (1985) and 
Benton (1966) have solved the system (2.17) by means of power-series expansions 
in h of the form 

h(h) = 2 bnAn, g(h) = C anhn, 

where an and b, are constants. We note from (2.18) thatf(0) = 0 = k(O), so that 
we can still expand the functionsf and k in the form 

W W 

n=l n-1 

n-1 n=l 

where fn and km are functions of s. As pointed out by Benton, such series converge 
more rapidly than the one in 2, since the region of interest now is 0 < A < 1. 

Immediately after the impulsive change in the angular velocity of the disk, 
fluid motion develops near the surface of the rotating boundary. The thickness 
of the superposed flow regime increases with time. The flow functions H and a 
given by (2.15b) serve to account for the increasing thickness of the secondary 
boundary layer as the transformation parameter varies from s = 00 (corres- 
ponding to t = 0) to s = 0 (in the ultimate state). 

3. The initial development 
The early time behaviour of the flow functions is determined by the corres- 

ponding behaviour of the transformed functions for large Is]. But we note that 
s = - t is a branch point of the transformed functions. We therefore expand the 
functions a(s), f(h, s) and k(h, s) in the form 

W 00 W 

a = X ( ~ + & ) - * ~ a ~ ,  f =  X (s+4)bnfn(h), k = C ( ~ + ~ ) ~ ~ k , ( h ) ,  (3.1) 
n-0 n=O n=O 

where 1s + $ 1  is large. A few terms of each of the series (3.1) are given by 

CC, = 0, fo(A) = 0, 2(Aki - ko) + hko = 0, kO(1) = 1, ( 3 . 2 ~ 4 )  

a1 = 0, f,(A) = 0, 2(hk; - kl) + hk1 = A(& h’- I&;) - h2kb, kl( I) = 0, 
(3.3a-d) 

a2 = 0, 2(Afi-f2)+hf2 = -4gko, f2(l) = 0, (3 .4a-c)  
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2(hkh - k,) + F,k2 = gf, - A(hk; - h'k,) - A"; + hk; - k, + +hkl, (3.44 

k , ( l )  = 0, (3.4e) 

ca3 = -f6(1), (3.5a) 

2(hfi-f3)+hf3 = -4gkl---h2f~-2ivif~+hh'f,+a(hf;l-f,)+hf,, (3.56) 

f&) = -f6(1), (3.5c) 

+ (hk6 - k,) + W k ,  - sf,), (3.54 

k3(1) = 0. (3.5e) 

The above sequence of linear ordinary differential equations is evidently un- 
coupled end the equations can be solved one after the other in the order mitten. 
Although there is no particular difficulty in carrying out the solution to any 
order, we shall conhe  ourselves to solving the sets (3.2)-(3.4). Evidently their 
solution depends upon knowledge of the basic von KBrmAn state. 

Employing the Fettis-Benton method of solution, we take the following 
power-series expressions for g, h, k,, k,, fa and k,: 

2(hkj-k,) +hk3 = gf3-h2&-h(hk;-kzh'+f,g'-gf;) 

where the coefficients cy, ci, c$ and d4 are to be determined and u, and bi correspond 
to the basic steady-state solution and are tabulated by Benton (1966). Sub- 
stituting (3.6) into (3.2)-(3.5) and equating the coefficients of different powers 
of h to zero, we get the following recursion relations: 

i-1 

3=1 
2(i- l )c$  = -i(i- l)C!+.X [(i-2j)c!jb,-j-c,lb,_j], 

2(i - I) d4 = - X [$ b6-j + 4cja<-j], 0 
i-1 

j=1 
(3.9) 

4-1 

j=1 
2 ( i - I ) c ~  = -(i-l)'c;+ C [ ~ a , - j - c 3 b , , + ( i - 2 j + ~ ) c , l b , - j ] .  (3.10) 

It is evident from these relations that all the coefficients in the power series 
(3.6) can be found in terms of c!, <, d2, and c: (since a, and b, are already known 
from the basic steady conditions). These are chosen so as to satisfy the boundary 
conditions at h = 1; which give 

C! = 2.237, C: = - 1.057, d; = 6.433, C: = 5.436. (3.11) 

The term-by-term inversion of (2.12), after substituting from (2.15) and (3.1), 
yields the following small-time solution: 

2f ( A )  [erfcczt+eczerfc--2exp cx+t 
2tt 2tt 

H l ( 2 , t )  = 2 
C 
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ecs erfc - 
2tS G1(z, t )  = &(A) + k1(h) [erfc c$ - 

2t)  

+ ees erfc - cz+t  - 2 exp rl - - - 1) e r f c s ]  +O(ts) ,  (3.13) 
2tS 

wheref,, k,,, kl and k, are given by (3.6) and h = e-cz. For finite cz/2t* but small 
z and t ,  (3.13) gives 

@(z, t )  M erfc (cz/2tt), 

which is identical to the solution of the Rayleigh problem. But, displayedin the 
form (3.12) and (3.13), the functions H1 and G1 clearly show the wavelike 
behaviour of the superposed flow and express the velocity (and hence the vorti- 
city) as diffusion from a source travelling with velocity c(vQ)t away from the 
rotating disk. These shear-type decaying wave trains are generated by the 
interaction of the superposed growing Rayleigh layer with the basic axial inflow. 

The real value of the substitution (2.12) and the resulting hierarchy of equa- 
tions (3.2)-(3.5), etc., lies in the fact that they provide detailed information 
about the way in which the superposed flow develops, grows and affects the 
whole ffow regime. Immediately after the impulsive change in the angular 
velocity of the disk, a simple Rayleigh shear, of dimensional thickness of order 
(vT)), forms in the azimuthal flow. The superposed Rayleigh layer grows and 
interacts with the von KArmCLn centrifugal action to induce radial outflow when 
terms of order tt fist become significant. This in turn produces axial i d o w  (due 
to  continuity) at order t l .  Associated with the axial flow within the secondary 
(growing) layer is normal suction through the edge of this layer, which develops 
as terms of order ts gain importance. At order t ) ,  the suction at the edge of the 
secondary layer generates axial flow in the outer flow regime (of the basic steady 
state). This axial flow is diverted into radial inflow in this region, which affects 
the azimuthal motion. By the time this happens, the superposed flow varies 
on two length scales, one increasing with t and the other being the (fixed) length 
scaIe of the basic flow. A characteristic length scale of the inner layer is 

2 = c( V Q ) )  T + (vT)B, (3.14) 

which evidently increases more rapidly than the thickness of the initial Rayleigh 
layer. But the growth of this layer is inhibited by the basic steady flow. In  the 
time evolution of the von KCLrmAn flow considered by Thiriot (1940), Nigam 
(1951) and Benton (1966), theinitial development is characterized by a similarity 
solution. No similitude exists in the present case. 

4. Approach to the ultimate state 
The dominant contributions to H1 and G1 as t-tm are associated with the 

singularities of the field functions at s = 0 and - t. Moreover, the final behaviour 
corresponds to the regions of the complex plane near s = 0. We note from 
(2.16) that s = 0 gives m = 1. In  order to study the approach to the ultimate 
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state, we expand the functions a, f and k in ascending powers of m - 1 in the form 

Q) m m 

a = c (m- l)%--lan, f = (m- l)n-lfn(h), k = (m- 1p-lkn(h), (4.1) 
n=O n=O n=O 

where m - 1 = [(s + &)* - +] is small. In  this process the transformed functions 
retain the branch point of the original expressions. A few terms of (4.1) are 
given by 

a. = 0, fo = *c2hh', ko = @Ag', (4.2) 

f, = a2 c2h + c2(a3 - a, + 4) Ah' +f2, 

k, = (2a, c2 - +) g + c2(a3 - a, + 4) Ag' + E,, (4.4) 

wheref, and E2 are given by 

h3f; + h2(2fi +f2 h" + h,;  - h'fi) + A(h& + h7,) + 4gE, 
= 4h3h"'- $h2h"-Ahh', ( 4 . 5 4  

PE'; + h(hEk - E ,  h' +f2 g' - gf;) = + P g "  + 2(g - hg ' )  - &hg, (4 .5b )  

f2(1) = 0, fk(1) = -8 ,  E,(l) = (2c2)-1-201,. (4.5c) 

The differential set (4.5) enables us to evaluate a,. But the functions f a  and k, 
still contain the unknown a,, which is to be obtained from the differential 
equations satisfied by f3 and k,. 

We solve the differential set ( 4 4 ,  again by the Fettis-Benton method, and 
write 

Substituting for h, g , f ,  and E ,  from (3.6) and (4.6) into (4.5a, b)  and equating the 
coefficients of different powers of h to zero, we get the following recursion 
relations for mi and li: 

i(i - 1) (i - 5 )  bi i-l 

2 j=l 
- 2 [(i2 - 3ij + 3j2) mi bi+ + 41,a,+ +jb, b 4 ,  (4.7) i y i  - 1) mi = 

(i - 1 )  (i - 4 )  i-l 

+ .Z [(i - 2j )  (aj mi+ + l j  bi+) - +aj b 4 .  (4.8) 
2 3=1 

i(i - 1 )  li = 

All the coefficients in the power series can be obtained in terms of m1 and 1,. 
The boundary conditions ( 4 . 5 ~ )  are sufficient to determine the three unknowns, 
namely ml, 1, and a2. Using the values of ai and b, tabulated by Benton (1966), 
the values of m,, ll and a2 are 

m, = 1.307, 1, = 1.239, a, = 0.126. (4.9) 
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Term-by-term inversion of (2.12) after substituting from (2.15) and (4.1) 
yields the following large-time solution: 

for cx-t > 0, (4.10~) 

H l ( z , t )  = *(HO+zH,O)+- H,"[-(l+i)erfcz+(--) i$ t 3  e+] 
2c 

(:)' ( (czi t ) z )  + eczerfc - 2tB cz+tl Icx-tl 
(l+t-cz)erfc--2 exp -- 

2tB 

+ ecz erfc - cz+tl 2d 
+! (P+c+( l -2az) -  "") [ -erfcT Icz-tl 

4 C 

+O(t-te-t'4) for cz-t < 0, (4.10b) 

+O(t-*e-*t) for cz -t > 0, (4.11 a) 

G1(z, t )  = Go + SzG; + 

(l+t-cx)erfc--2 Icz-tl (:)* - exp ( -- ( ~ z p t t ) ~ )  
2tg 

+~(t-*e-tt) for cz-t < 0. (4.1lb) 

It is evident from (4.10) and (4.11) that, after sufficient time has elapsed, 
the superposed fluid motion varies on two different length scales. The flow 
within the inner layer, whose characteristic length grows according to (3.14), is 
now completely permeated by diffused wave trains. The wave front of these 
shear-type waves moves with velocity c( v B ) ~ .  These waves, however, decay 
through the thickness of the basic azimuthal and radial flow. The superposed 
flow in the outer region, which extends to the region of the von K&rmAn state, 
is primarily generated by the suction induced at the edge of the inner layer. 
Making t+ao in the expressions (4.10) and (4.11) for H1(z, t) and G1(z, t), we fhd  
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that the new steady state, corresponding to the changed angular velocity of the 
rotating disk, is given by 

H(z,co) = H o + + s ( H o + ~ H , ) ,  G(z,co) = G o + ~ ( G o + $ ~ G ~ ) .  (4.12) 

It is easy to verify that the h a 1  state (4.12) is in agreement with the state 
expected from (2.10) without looking at  the transition. The h a 1  state of the 
spin-up is effectively achieved in a time 4/c2Q = 5.115!F. 

Situations similar to the one considered in the present paper have been studied 
by Greenspan & Howard (1963) and Benton (1966). Greenspan & Howard 
discussed the spin-up of a viscous fluid confined between two infinite parallel 
coaxial disks initially in rigid-body rotation. Benton (1966) has found that the 
ultimate approach to the steady state of the Greenspan & Howard problem is a 
small amplitude decaying oscillation (of twice the frequency of the rigid-body 
rotation) about the steady state. Benton (1966) has described the time evolution 
of the von K&rm&n flow due to a single rotating disk. His numerical results also 
indicate a non-monotonic approach to the steady-state values. In  analogy with 
the Greenspan BE Howard case, Benton attributes this to small amplitude 
oscillations of frequency 2Q about the ultimate state. In  the present case also, 
the approach to the final state is non-monotonic. To demonstrate this we con- 
sider the velocity field at the wave front. For cz = t ,  (4.10) and (4.11) give 

(4.13) 

(4.14) 

Since H," and G; are negative at  large distances, these results clearly indicate 
that, near the wave front, the large-time values overshoot the steady-state 
value. Although the non-monotonic behaviour of the fluid motion in the final 
stages of the spin-up agrees with the results of Greenspan & Howard (1963) and 
Benton (1966), the solution (4.1) provides no evidence of the oscillatory char- 
acter of the superposed flow. Such behaviour emerges entirely because of the 
propagation of shear-type diffusing waves which are generated owing to the 
interaction of viscous diffusion with the basic axial flow. 

The large-time solution (4.1) depends on an expansion about s = 0, and hence 
any singularity which could give rise to a decaying oscillation is precluded from 
appearing. In  order to expose any possible periodic motion, in the next section 
we investigate briefly the contribution of singularities off the real axis of the 
complex s plane. 

5. A general approach 
A general solution of the set (2.18) will be of the form 

l *  1 "  
f(S, A)  = - 'c f,A", k(s,  A )  = - 2 k" A", 

L,=1 L,=l 
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where L, f ,  and k, are polynomials in m. On factorization of L and f,, the trans- 
formed function s-lQ(s, A )  will be a linear combination of terms of the form 

wheref, etc. are constants and ,8 may be real or complex. The inverse of (5 .2)  is 

03 

x c fne*zc. (5.3) 

Terms similar to the first two terms in the above expression have already 
appeared in the solutions (3.13) and (3.14) and (4.10) and (4.11), and should be 
interpreted in the same manner. All the possible modes of oscillation of the 
superposed fluid flow are associated with complex values of p occurring in the 
third term in (5 .3) .  

When j = y +is, we use a result of Strand (1965) to expand the error function 
with complex argument (see appendix and also Chawla 1972). We get 

n=1 

cz + 2pt 
2t4 

exp [cpz + pzt - i t ]  erfc - 

= exp [cyx + ( 7 2  - 8 2  - &) t] $[ Icz + 2yt I /2t4, St+] for cz + 2yt > 0, (5 .4a)  

for cz+2yt < 0. (5 .4b)  

We find that, for a complex /3 with negative real part, the region of fluid flow 
between the rotating disk and the moving surface cz+2yt = 0 can support 
harmonic waves of wavenumber c8 and frequency 2 1718. Continuity considera- 
tions immediately suggest that in such a case the fluid column ahead of the wave 
front cz + 2yt = 0 should be oscillating vertically. This would in turn make the 
whole of the flow regime oscillate [see (2.12)] about the growing Rayleigh layer 
and the basic von KArmAn state. No oscillatory motion corresponds to with 
non-negative real part. 

We now study the various modes of oscillation by constructing truncated 
solutions of the set (2.18). A two-term solution gives 

= exp[cyz+(y2--82--)t] [2exp( - i 8 l c z + 2 y t l ) + ~ ( l c z + 2 y t l / 2 t 8 , 8 ~ ) ]  

01 = M,/L, = 2mc/[c4m3(m + 1 )  + (m + 2)1, (5.5) 

a = M4/L4, (5.6) 

whereas a four-term solution yields 

with M4 = 24cm[2c4m3(m + 1 )  (2m + 1 )  (m + 2 )  (m + 3 )  
+ 3ms+ 17m5+ 5m4- 28m3- 7m2 + 28m+ 121, 

L4 = 24c4m3(m + 1 )  (m + 2 )  (m + 3 )  (2m + 1 )  [c4m3(m + 1) + (m + 2)]  
-(2m8+5m7-66ma-239m5+58m2+396m3-312m2-816m-288). 

Choosing only those factors of L which lead to oscillatory motion, we get from 
(5.5) 

/Izl = - 0.283 1.180i; (5.7) 
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The four-term solution (5.6) modifies this value to 

p41 = - 0.234 & 1.231i ( 5 . 8 ~ )  

and gives an additional mode 

p42  = - 0.167 f 0.5363. (5.8b) 

A six-term expression for L modifies these values further though very slightly 
and introduces one more mode, with 21y,,lS,3 of order 

Associated with Pd1 are oscillations of frequency 0-450R. But these oscillations 
die out in a time O.748LV1, which is much less than the spin-up time ( = 5.1 15Q-1). 
The second mode, given by ,842, corresponds to oscillations of frequency 0*140R, 
decaying in a time 2.509R-l. The period (=  45.008Q-1) of these oscillations is 
much larger than the spin-up time. Similarly the periods of all other modes are 
too large to be able to induce appreciable oscillations before decaying. We con- 
clude that the new von K&rm&n state is achieved without the fluid undergoing 
effective oscillatory motion during the spin-up process. 
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Appendix 
Strand (1965) has shown that, for x > 0 and y 2 0,  

W 

erfc (x + iy) = e--&iXy ( ~ y ) ~ m  [y,(z) - ixy(n + 1) y,+l(x)] 
n=-0 

(A 1) - - e-2hyq% y) (say), 

with yo(x) = erfcx. 

Since erf [ - (x + iy)] = - erf (x + iy) and erf (z- iy) = erf (z + iy), these cases are 
also covered by (A 1) and (A 2), but the case x = 0 is not. $(x, y) is a complex 
function which tends to zero as x + 00. 

REFERENCES 

BENTON, E. R. 1966 J .  Fluid Mech. 24, 781. 
CHAWLA, S.  S .  1972 J .  Fluid Mech. 53, 545. 
COCHRAN, W. G. 1934 Proc. Camb. Phil. SOC. 30, 365. 
FETTIS, H. E. 1955 Proc. 4th Midwestern Conf. Fluid Mech., Purdue, p. 95. 
GREENSPAN, H. P. & HOWARD, L. N. 1963 J .  FZuid Mech. 17, 385. 
K~RMAN, TH. VON 1921 2. angew. Math. Mech. 1, 244. 
NIUAM, S .  D. 1951 Quart. Appl. Math. 9, 89. 
STRAND, 0. N. 1965 Math. Comp. 19, 127. 
THIRIOT, H. K. 1940 2. angew. Math. Mech. 20, 1. 




